DEPENDENCE OF GAS EXCHANGE ON THE LEVEL OF GOUND WATER IN SWAMP COTTON GRASS-SPHAGNUM PINE FORESTS

Александр Георгиевич МОЛЧАНОВ

Abstract


Introduction. Peat bogs play a very important role in climate regulation, while peat moss bogs can significantly contribute to stable concentration of CO2 in the atmosphere. Goals and objectives. The work is aimed at the evaluation of CO2 gas exchange in pine bog cotton grass peat moss biogeocoenosis, as a result of ground water drawdown. Materials and methods. The research was carried out in the bog pine biogeocoenosis in the southern taiga (the Yaroslavl Region, Uglich district) during the vegetation period in 2009 and 2011 in different conditions of soil moisture and temperature. The measurement of CO2 gas exchange was carried out using infrared gas analyzer “LI-820” (Li-Cor, USA) with the open scheme. Research results. It has been defined that the dependence of the CO2 exchange between the surface of sphagnum cover including soil and air is largely determined by the natural water table. Solar radiation incurs ambiguous effect on CO2 exchange at the value of natural water table variations from 4 to 21 cm. This dependence is represented in the logarithmic form. However, at the value of natural water table below 21 cm the carbon dioxideis emitted, rather than absorbed.  Further reduction of natural water table below 30 cm results in independence of CO2 exchange on solar radiation.  Further reduction leads to suppression of emission. With the increasing temperature and natural water table varying from 7 to 21 cm there is a decrease of CO2 emissions, and at the value of natural water table below 33 cm some increase is observed. When the natural water table is below 43 cm, the effect of temperature is significantly weaker, and CO2 emissions are reduced by half or more. Using the developed dependence of CO2 gas exchange emitted from the surface of sphagnum on the environmental factors (natural water table, solar radiation, air temperature and humidity) our research revealed that when the level of natural water table varies from 0 to 8 cm the absorption of CO2 sphagnum is comparable with  the absorption of CO2 by Ia quality class pine forest. However in the second half of the vegetation period when the natural water table falls below 20-30 cm there are emissions of CO2 that cannot be compensated by the pine forest of class Ia. Conclusion. When the natural water table amounts to 1-7 cm during the vegetation period, the net ecosystem exchange (NEE) of the bog cotton grass-sphagnum pine forest under study amounts to 7.6 t CO2 / ha during the vegetation season, including 6.1 t CO2 / ha from Sphagnum mosses and 3.2 t / ha from pine trees (needles photosynthesis minus trunk respiration and night needle respiration). By reducing the natural water table from mid-summer to 20-30 cm, the net ecosystem exchange becomes negative and amounts to -17.5 t CO2 / ha during the vegetation period. As a result, at present, due to greenhouse effect observed in the subzone of the southern taiga in the second half of summer there is often a decrease in natural water table below 20 cm. In this case, the net ecosystem exchange of  cotton grass-sphagnum biogeocoenosis becomes negative and even pine forest of Ia quality class cannot compensate for these emissions produced on the same area. However, when the natural water table stands at 2-7 cm the net ecosystem exchange in bog pine cotton grass-sphagnum biogeocoenose is close to net ecosystem exchange in  bilberry-pine of Ia quality class.

Keywords


sphagnum; pine; swamp; carbon dioxide (CO2) gas exchange; the level of the bog water; air temperature; solar radiation; meteorological factors

Full Text:

PDF (Russian)

References


Вомперский С.Э., Сирин А.А., Цыганова О.П. и др. Болота и заболоченные земли России: попытка анализа пространственного распределения и разнообразия // Известия РАН. Сер. географическая. 2005. № 5. С. 21–33.

Вомперский С.Э., Сирин А.А., Сальников А.А. и др. Оценка площади болотных и заболоченных лесов России // Лесоведение. 2011. № 5. С. 3–11.

Assessment on Peatlands, Biodiversity and Climate Change. Main Report. Parish F., Sirin A., Charman D., Joosten H., Minayeva T., Silvius M., Stringer L. (Eds.) Global Environment Centre, Kuala Lumpur and Wetlands International, Wageningen. 2008. 179 p. http://www.gec.org.my/in-dex.cfm?&menuid=48&parentid=63 (дата обращения 20.03.2015).

Заварзин Г. А., Дедыш С. Н. Микробные процессы в болотных экосистемах: изменения природных вод под влиянием деятельности микроорганизмов // Изменение окружающей среды и климата, природные и связанные с ними техногенные катастрофы. М.: ИФЗ РАН, 2008. Т. IV. С. 80-96.

Климанов В.А, Сирин А.А. Динамика торфонакопления болотами Северной Евразии за последние 3000 лет // Доклады РАН. 1997. Т. 354. № 5. С. 683-686.

Минаева Т.Ю., Трофимов С.Я., Чичагова О.А. и др. Накопление углерода в почвах лесных и болотных экосистем южного Валдая в голоцене // Известия РАН. Серия биологическая. 2008. № 5. С. 607–616.

Минаева Т.Ю., Сирин А.А. Охрана болот в России: состояние и перспективы // Болота и заболоченные леса в свете устойчивого природопользования. М.: ГЕОС, 1999. С. 356-360.

Schipperges B., Rydin H. Response of photosynthesis of Sphagnum species from contrasting microhabitats to tissue water content and repeated desiccation // New Phytol. 1998. Vol. 140. Pp. 677-684.

Вомперский С.Э. Влияние современного климата на болотообразование и гидролесомелиорацию // Структура и функции лесов Европейской России / Отв. ред. Уткина И.А. М.: ТНИ КМК, 2009. С. 31-51.

Наумов А.В., Ефремова Т.Т., Ефремов С.П. Продуцирование СО2 торфяной почвой слабо осушенного мезотрофного болота в связи с гидротермическими условиями сезона // Болота и заболоченные леса в свете задач устойчивого природопользования. Материалы совещания / Отв. ред. Вомперский С.Э., Сирин А.А. М.: ГЕОС. 1999. С. 218-219.

Murray K.J., Harley P.C., Beyers J. et al. Water content effects on photosynthetic response of Sphagnum mosses from the foothills of the Philip Smith Mountains, Alaska // Oecologia. 1989. Vol. 79. Pp. 244-250.

Silvola J. Combined effects of varying water content and CO2 concentration on photosynthesis in Sphagnum fuscum // Holarctic Ecology. 1990. Vol. 13. Pp. 224-228.

Haraguchi A., Yamada N. Temperature Dependency of Photosynthesis of Sphagnum spp. Distributed in the Warm-Temperate and the Cool-Temperate Mires of Japan // American Journal of Plant Sciences. 2011. Vol. 2. Pp. 716-725.

Арутюнян С.Г., Уткин А.И. Биологическая продуктивность и вертикально-фракционная структура естественных средневозрастных древостоев трех типов сосняков // Вертикально-фракционное распределение фитомассы в лесах / Под ред. Исаева А.С., Фрей Т.Э., Орлова А.Я. М.: Наука, 1986. С. 163–177.

Edwards N.T., Sollins P. Continuous measurement of carbon dioxide evolution from partitioned forest floor components // Ecology. 1973. Vol. 54, № 2. Pp. 406–412.

Наумов А.В. Дыхание почвы: составляющие, экологические функции, географические закономерности. Новосибирск: Изд-во СО РАН, 2009. 208 с.

Вомперский С.Э. Биологические основы эффективности лесоосушения. М.: Наука, 1968. 312 с.

Молчанов А.Г. Сравнение интенсивности фотосинтеза сосны в разных эдафических условиях // Лесоведение. 1993. № 6. С. 76-80.

Молчанов А.Г. Фотосинтетическая продуктивность заболоченного и суходольного сосновых древостоев // Болота и заболоченные леса в свете задач устойчивого природопользования. Материалы совещания. С. 215-217.

Молчанов А.Г. Баланс СО2 в экосистемах сосняков и дубрав в разных лесорастительных зонах. Тула: Гриф и К, 2007. 284 с.

Забуга В.Ф., Забуга Г.А. Взаимосвязь дыхательного газообмена СО2 и радиального роста ствола сосны обыкновенной // Физиология растений. 1985. Т. 32, № 5. С. 942-947.

Забуга В.Ф., Забуга Г. А. Дыхание сосны обыкновенной. Новосибирск: Наука, 2013. 208 с.

Zha T., Kellomaki S., Wang K-Y., Ryyppo A., Ninisto S. Seasonal and Annual Stem Respiration of Scots Pine Trees under Boreal Conditions // Annals of Botany. 2004. Vol. 94, № 6. Pp. 889-896

Молчанов А.Г. Экофизиологическое изучение продуктивности древостоев. М.: Наука, 1983. 136 с.

Molchanov A.G. Photosynthetic utilization efficiency of absorbed photosynthetically action radiation by Scots pine and birch forest stands in the southern Taiga // Tree Physiology. 2000. Vol. 20, № 17. Pp. 1137-1148.


Refbacks

  • There are currently no refbacks.