Method to Define the Remaining Life Time of High-Pressure Hose of Forest Machines

Анатолий Александрович ТАРБЕЕВ, Александр Иванович ПАВЛОВ

Abstract


Introduction. Definition of  remaining life time of  high-pressure hose, the fault of which is of sudden nature, is one of the topical technical problem, intended to improve the reliability of performance of  hydraulic drive of forest machines. This problem is not solved to the full and it is  required to improve the diagnostic technique of current condition of high-pressure hose. The goal of the research is to improve the efficiency of  forest machines operation due to failure prediction and  full employment of resources of the parts of hydraulic drive. High-pressure hoses of forest machines (Forwarder 1910F, Finnish production), exploited in summer and winter in Priluzhskiy district of the Komi Republic were chosen to be the object of the research. Results. The  experimental researches to define the  mode of vibration, arising when their dynamic loading, were carried out. It was demonstrated that the oscillating process coming from  the resonance state of a pipeline arose under certain pressure of loading in the pipeline. In this regard,  free frequency of pipeline with liquid was chosen as a testing parameter, dependence on the cycles of dynamic loading was determined, frequency function of failure distribution was found, a method to define probability of failure of the parts of hydraulic drive was offered. The method allows to determine  the remaining life time of the parts of hydraulic drive. Free frequency of pipeline with liquid was taken as a  testing parameter , describing technical condition of  high-pressure hose . Conclusion. The formula of  probability of failure  of pipeline in summer and winter was derived. It was shown that loss of life  of high-pressure hose at low temperatures is explained with  the peculiarities of rubber properties it is made of.


Keywords


hydraulic drive; probability of failure; diagnosis; load; free frequency; distribution function.

Full Text:

PDF (Russian)

References


Павлов А.И., Тарбеев А.А., Вдовин С.Л. Надежность, диагностика и защита гидроприводов транспортно-технологических машин / под общ. ред. проф. А.И. Павлова. Йошкар-Ола: Поволжский государственный технологический университет, 2017. 376 с.

Никитин О.Ф. Надежность, диагностика и эксплуатация гидропривода мобильных объектов. М.: Изд-во МГТУ им. Н.Э. Баумана, 2007. 312 с.

Лощенов П.Ю. Оценка эксплуатационной надежности гидроприводов лесных машин // Вестник МГУЛ – Лесной вестник. 2012. № 2. С.120-122.

Вдовин С.Л., Охотников А.В. Повышение экономичности и экологичности приводов лесных машин // Интеграл: научно-практический межотраслевой журнал. 2013. № 3 (71). С. 72.

Review of methods for monitoring the state of hydraulic drive elements / A.R. Kruk, A.L. Egorov, V.A. Kostyrchenko et al. // Fundamental research. 2016. No. 2-2. P. 267-270.

Дроздовский Г.П., Шоль Н.Р., Юсенхан В.И. Обоснование направления проектирования структуры гидросистемы управления оборудованием лесных машин // Вестник МГУЛ – Лес-ной вестник. 2010. № 5. С. 86-90.

Sanders R.E. Accidents involving compressors, hoses, and pumps, Chemical Process Safety, fourth ed., Butterworth-Heinemann. Oxford, 2015. P. 102-103.

Reliability test and evaluation for hydraulic hose assembly / D. Chen, S. Li, C.Yao et al. // China Mechanical Engineering. 2015. No 26 (14). Pp. 1944-1952.

Reliability and life study of hydraulic solenoid valve / S.V. Angadia, R.L Jacksona., Choea Song-yul et al. // Engineering Failure Analysis. No 16(3), 2009. Pp. 944-963.

Robilard J.M., Jorgensen C.K. Forestry machines with transverse engine and hydraulic system installation // USA patent 8579069, 2013.

Kim H.-E., Kang B.-S., Cho Y.-H. Study on Acceleration Factor Nodel with Asselerated Stress Interactions // In Transactions of the Korean Society of Mechanical Engineers. 2012. No 36 (7). P. 237-245.

Westerberg S., Shiriaev А. Virtual епvironmепt-bаsеd teleoperation of forestry machines: Dеsigпiпg future intегасtiоn methods // Joumal of Human-Robot Interaction. 2013. No 2 (3). Р. 84-110.

Тен М.С., Стрельников А.Н. Диагностика гидропривода по наличию механических примесей в рабочей жидкости // Авиамашиностроение и транспорт Сибири. Сборник статей VII Всероссийской научно-практической конференции. Иркутск: Иркутский национальный исследовательский технический университет, 2016. С. 395-398.

Hydraulics, hydraulic machines and hydrau-lic drives / Т.М. Bashta, S.S. Rudnev, B.B. Nekrasov et al. M.: Publishing House Alliance, 2010. 423 p.

Упреждающее обслуживание гидравлических систем летательных аппаратов / А.М. Гареев, Ю.П. Злобина, И.А. Попельнюк и др. // Самара: Самарский научный центр РАН, 2014. 168 с.

Волков В.Н., Бурмистров В.А., Тимохова О.М. Показатели надежности гидропривода // Современные проблемы науки и образования. 2014. № 4. С. 121-128.

Диагностика технических устройств. Монография / Г.А. Бигус, Ю.Ф. Даниев, Н.А. Быстрова и др. М.: МВТУ им. Н.Э. Баумана, 2014. 624 с.

Gerike B.L., Gerike P.B., Esherkin P.V. Analysis of modern methods of vibration diagnostics of complex systems // New technologies, materials and innovations in production: Works of the International School-Seminar. Tomsk: Tomsk Polytechnic University, 2009. P. 74-79.

Васильченко В.А., Соболев В.О. Диагностика технического состояния гидроприводов мобильных машин // Строительно-дорожные машины. 2008. № 8. 324 с.


Refbacks

  • There are currently no refbacks.