THE PROPERTIES AND METHOD FOR OBTAINING WOOD PARTICLE BOARDS BASED ON COMBINED FILLER

Сергей Алексеевич УГРЮМОВ

Abstract


Introduction. Particleboards are widely used in the manufacturing industry. However, they are characterised by relatively low strength, due to the fact that wooden particles are weakened while chopping, and limited binder application doesn’t allow coating all the surfaces, thus fail in making flush contact between the particles. The strength of the boards in many ways depends on the mechanical strength characteristics of the main filler and the binding degree between the particles. It is very important to layer the particles with the minimum number of voids, which inevitably occur when the particles contact with the main filler. From a practical perspective it is important to evaluate the working properties of particleboards produced with a combined filler, i.e. a mix of coarse core particles and flax noil fibers. The work aims to research into the process of particleboard production with increased strength under bending by mixing flax processing wastes into the filler composition. Research tasks involve manufacturing of experimental samples of particleboards containing flax processing wastes; evaluation of the main physical and mathematical properties of particleboards by means of evaluation of their bend-strength, ultimate tensile strength transversely to the surface, expansion and water absorption resistance. Materials and methods. In order to experimentally validate the method of strength enhancement of particleboards due to addition of the flax processing wastes to the main filler we carried out a number of experiments meant to develop, manufacture and test physical and mechanical properties of particleboards containing a wooden filler composed of wooden chips mixed with glue and additive of flax processing wastes also mixed with glue. When shaping a sheet the chips are mixed with flax processing wastes at the ratio 75:25. Results. The quality experiments carried out validated the enhanced physical and mechanical properties of particleboards manufactured based on a combined filler as compared with conventionally produced sheets. Conclusion. The structure of a particleboard containing combined wooden filler features enhanced physical and mechanical properties due to lower intake characteristics and reinforcing property of flux-fiber contained in flax processing wastes.


Keywords


particleboard; reinforcement; wood filler; flax fiber; flax noil; physical and mechanical properties

Full Text:

PDF (Russian)

References


Investigation of properties of polymeric composition materials around a heterogeneous matrix / A.N. Muranov, G.V. Malysheva, V.A. Nelyub et al. // Polymer Science. Series D, 2016. Vol. 6. No 3. Pp. 256.

Волынский В.Н. Технология древесных плит и композитных материалов. СПб.: Лань, 2010. 336 с.

Effect of two relative humidity environments on the performance properties of MDF, OSB and chipboard. Part 2. fatigue and creep performance / J. Pritchard, M.P. Ansell, R.J. Thompson, et al. // Wood Science and Technology, 2001. Vol. 35. No 5. Pp. 405-423.

Fatigue in wood-based panels. Part 1: the strength variability and fatigue performance of OSB, chipboard and MDF / R.J. Thompson, M.P. Ansell, P.W. Bonfield, et al. // Wood Science and Technology, 2002. Vol. 36. No. Pp. 255-269.

Костенко Н.А., Балясникова С.В., Волошановская Ю.Э. Сопротивление материалов. М.: Высшая школа, 2000. 430 с.

Bouzakis K.D., Koutoupas G. Bending and indentation tests to determine chipboards' mechanical strength critical stresses and their correlation to the specific cutting force in milling // Wood Science and Technology. 2003. Vol. 37. No 2. Pp. 141-159.

Influence of technological factors on properties of chipboards based on a cardanol-containing polyurethane binder / A.S. Dozhdikov, O.F. Shishlov, V.V. Glukhikh et al. // Polymer Science. Series D, 2015. Vol. 8. No 2. Pp. 116-121.

Леонович А.А. Основные направления исследований и разработок по совершенствованию технологии древесно-стружечных плит // Дерево-обрабатывающая промышленность. 1999. № 5. С. 16.

Батаев А.А., Батаев В.А. Композиционные материалы: строение, получение, применение. М.: Логос, 2006. 398 с.

Патент SU 2012487. Способ изготовления изделия из спрессованных древесных частиц / В.Ф. Фарафонтов, Э.П. Иванов, В.Д. Самарин. № 5023243/15; заявл.: 12.11.1991. 6 с.

Поташев О.Е., Лапшин Ю.Г. Механика древесных плит. М.: Лесная промышленность, 1982. 112 с.

Угрюмов С.А., Александров П.В. Оценка конкурентоспособности композиционного материала на основе шпона и древесно-клеевой композиции с упрочненными поверхностными слоями // Вестник КГТУ. 2015. № 2 (35). C. 80-84.

Угрюмов С.А. Исследование свойств композиционной фанеры с внутренним слоем из древесной стружки // Вестник КГТУ. 2005. № 11. C. 110-111.

Патент RU 2170749. Композиция для изготовления малотоксичных древесных плит / Н.Е. Николаев, В.П. Стрелков, А.П. Шалашов. № 2000103512/04; заявл.: 15.02.2000. 6 с.

Интенсификация процесса обескостривания льна с применением пассивных рабочих планок / Д.А. Волков, М.С. Енин, Е.Л. Пашин и др. // Известия высших учебных заведений. Технология текстильной промышленности. 2013. № 5 (347). С. 29-32.

Патент RU 2377270. Клей для изготовления костроплит / С.А. Угрюмов, В.Е. Цветков. № 2008115758/04; заявл. 21.04.2008. 5 с.


Refbacks

  • There are currently no refbacks.