ALGORITHM FOR REVILING THE PHENOLOGICAL PARAMETERS OF FOREST COVER ON THE BASE OF TIME SERIES OF SATELLITE DATA
Abstract
Phenological parameters of forest cover are key indicators for understanding the current state of forests and their response to climate change. The aim of the work was the development and testing of an algorithm for reviling phenological characteristics and indicators of forest bio-productivity based on the analysis of time series of satellite data in the TIMESAT dynamic window at the level of a single forest district. In the study, we used the MODIS data obtained for the forest cover of the Mari Zavolzhje region. The paper proposes an algorithm for processing the NDVI time series for 2000–2018, obtained by MODIS 16-day composites of on the territory of the Kuyar forestry of the Mari forest Zavolzhje region, in the TIMESAT program. The NDVI MODIS data series were aligned in this program using the Savitsky-Golay filter. The time series differs from simple data sampling by taking into account the correlation of measurements with time, and not just the statistical characteristics of the estimated data. Seasonal data were obtained from the smoothed curves in the TIMESAT program, on the basis of which a file in the "tpa" format was formed. The seasonal period of each of the 18 years of observations was considered from mid-April to mid-November of the respective year, which averaged 210 days in total. The algorithm made it possible to quantify 6 out of 1 phenological indicators of forest cover for a plot (group of pixels) of the studied forest areas: the start of the season (SOS), the end of the season (EOS), the length of the season (LOS), the maximum NDVI (MV), the day of the year of MV and vegetation season amplitude (SA). SOS and EOS averages obtained show relatively stable dynamics over the study period. Some shift in the days of the start of the season was observed in 2001, 2005, 2009, 2015 and 2016, when SOS reached more than 140 days from the beginning of the calendar year. For the same years, the maximum days of the end of the season (EOS) are accounted for exceeding 250 days from the beginning of the calendar year. The length of the season on the investigated forest district (LOS) varies on average from 96 to 154 days. The maximum LOS periods were for 2001 (138 days), 2010 (151 days), 2013 (121 days), and 2016 (154 days) respectively. The results of the study showed that over the 18-years period variations in phenological indicators did not have a significant impact on the productivity and growth of forests in the study area. Although the use of NDVI to monitor phenological characteristics in mixed coniferous and deciduous forests has some limitations, our research has shown that it can be a very useful tool in assessing the effects of environmental change on the growth of forest ecosystems.
Keywords
Full Text:
PDF (Russian)References
Liang L., Schwartz M.D., Fei S. Validating satellite phenology through intensive ground observa-tion and landscape scaling in a mixed seasonal forest // Remote Sensing of Environment. 2011. Vol. 115. Pp. 143–157.
Brown M.E., De Beurs K.M., Marshall M. Global phenological response to climate change in crop areas using satellite remote sensing of vegetation, humidity and temperature over 26 Years // Remote Sensing of Environment. 2012. № 126. Pp. 174–183.
Horion S., Cornet Y., Erpicum M., Tychon B. Studying interactions between climate variability and vegetation dynamic using a phenology based ap-proach // International Journal of Applied Earth Ob-servation and Geoinformation. 2013. № 20. Pp. 20–32.
Швецов Е.Г., Парфенова Е.И., Чебакова Н.М. Мониторинг изменений растительности на территории Средней Сибири за период 1990-2015 гг. по данным Landsat // Лесные экосистемы в условиях изменения климата: биологическая продуктивность и дистанционный мониторинг: сбор-ник научных статей. Йошкар-Ола: ПГТУ. 2018. № 4. С. 30-39.
К вопросу об углерододепонирующих на-саждениях / Э.А. Курбанов, О.Н. Воробьёв, Л.С. Мошкина и др. // Вестник МарГТУ. Сер.: Лес. Экология. Природопользование.2008. № 3 (4). С. 5-17.
Курбанов Э.А. Углерододепонирующие насаждения Киотского протокола. Йошкар-Ола: МарГТУ, 2007. 184 с.
Tchebakova N.M., Parfenova E.I., Soja A.J. The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate // Envi-ronmental Research Letters. 2009. Vol. 4. Pp. 1-9.
Пахучий В.В., Пахучая Л.М. Оценка изменчивости площади участков островного местонахождения сосны кедровой сибирской в связи с их географическим положением в Республике Коми // Лесные экосистемы в условиях изменения климата: биологическая продуктивность и дистанционный мониторинг: сборник научных статей. Йош-кар-Ола: ПГТУ, 2018. C. 82-92.
Bonan G.B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests // Science. 2008. № 320. P. 1444–1449.
IPCC, 2007. The effects of climate change on agriculture, land resources, water resources and biodiversity. Washington, DC: Intergovernmental Panel on Climate Change. 2007. P. 243 p.
Recent shift in Eurasian boreal forest greening response may be associated with warmer and drier summers / W. Buermann, P.R. Bikash, M. Jung et al. // Geophysical research letters. 2014. № 41. Pp. 1995–2002.
Курбанов Э.А. Два десятилетия исследований растительного покрова по МODIS / Лесные экосистемы в условиях изменения климата: биологическая продуктивность и дистанционный мониторинг: сборник научных статей. Йошкар-Ола: ПГТУ, 2016. С. 123-132.
Detecting the effects of climate change on canopy phenology in coniferous forests in Semi-Arid mountain regions of China / J. Du, Z. He, J. Yang, et al. // International Journal of Remote Sensing. 2014. № 35. Pp. 6490–6507.
Relationships between MODIS phenological metrics, topographic shade, and anomalous temperature patterns in seasonal deciduous forests of south Brazil / S.T. Thiago, L.S. Galvão, F.M. Breunig et al. // International Journal of Remote Sensing. 2015. Vol. 36. № 18. Pp. 4501-4518.
О связи фенологического развития расти-тельности таежной зоны с величиной NDVI, опре-деленной по спутниковым данным / М.А. Медведева, В.В. Елсаков, И.Ю. Савин и др.// Современные проблемы дистанционного зондирования Земли из космоса. 2010. Т. 7. № 1. С. 319–329.
Leinenkugel P., Kuenzer C., Oppelt N., Dech S. Characterisation of land surface phenology and land cover based on moderate resolution satellite data in cloud prone areas: a novel product for the Mekong basin // Remote Sensing of Environment. 2013. № 136. Pp. 180–198.
Мишулина О.А. Статистический анализ и обработка временных рядов. М.: МИФИ, 2004. 180 c.
Madsen H. Time series analysis. – 1st Edition Chapman and Hall/CRC. 2007. 392 p.
Chandler R.E., Scott E.M. Exploratory analysis: statistical methods for trend detection and analysis in the environmental sciences. Chichester, UK: John Wiley & Sons, Ltd, 2011. P. 25-59.
Спутниковое картографирование растительного покрова России / С.А. Барталев, В.А. Егоров, В.О. Жарко и др. // М.: ИКИ РАН. 2016. 208 c.
Improved forest-cover mapping based on MODIS time series and landscape stratification / E. Cano, J.F. Denux, M. Bisquert et al. // International Journal of Remote Sensing. 2017. № 38(7). Pp. 1865-1888.
A method for mapping Australian woody vegetation cover by linking continental-scale field data and long-term Landsat time series / T. Gill, K. Johansen, S. Phinn et al. // International Journal of Remote Sensing. 2017. № 38(3). Pp. 679-705.
Analyzing spatial and temporal variability in short-term rates of post-fire vegetation return from Landsat time series / R.J. Fraziera, N.C. Coopsa, M.A. Wulderb et al. // Remote Sensing of Environ-ment. 2018. № 205. Pp. 32–45.
Оценка точности и сопоставимости тематических карт лесного покрова разного пространственного разрешения на примере Среднего Поволжья / Э.А. Курбанов, О.Н. Воробьев, А.В. Губаев и др. // Современные проблемы дистанционного зондирования Земли из космоса. 2016. Т. 13. № 1. С. 36-48.
Оценка динамики и нарушенности лесного покрова в Среднем Поволжье по снимкам Landsat / О.Н. Воробьев, Э.А. Курбанов, Ю.А. Полевщикова и др. // Современные проблемы дистанционного зондирования Земли из космоса. 2016. Том. 13. № 4 . С. 124-134.
Френкель М.О. Межрегиональный экомониторинг Волжского бассейна. Киров: АО «Кирово-Чепецкий химкомбинат», 1997. 178 с.
Jönsson P., Eklundh L. TIMESAT – a program for analyzing time-series of satellite sensor data // Computers and Geosciences. 2004. Vol. 30. Pp. 833- 845.
Eklundh L., Jönsson P. Timesat 3.1 Software Manual. Lund University, 2011. Sweden http://www.nateko.lu.se/personal/Lars.Eklundh/TIMESAT/timesat.html
de Beurs K.M., Henebry G.M. Spatio-temporal statistical methods for modelling land surface phenology // Chapter 9. In (I.L. Hudson, M.R. Keatley, eds) Phenological Research. Methods for environmental and climate change analysis. Springer: New York, 2010. P. 117-208.
Kuenzer C., Dech S., Wagner W. Remote sensing time series: Revealing land surface dynamics. Springer, 2015. 441 p.
Миклашевич Т.С., Барталев С.А. Метод определения фенологических характеристик рас-тительного покрова на основе временных рядов спутниковых данных // Современные проблемы дистанционного зондирования Земли из космоса. 2016. Т. 13. № 1. С. 9–24.
Assessing phenological change and climatic control of Alpine grasslands in the Tibetan Plateau with MODIS time series / C. Wang, H. Guo, L. Zhang et al. // International Journal of Biometeorology. 2015. № 59. P. 11–23.
Savitzky A., Golay M.J.E. Smoothing and dif-ferentiation of data by simplified least squares proce-dures // Analytical Chemistry. 1964. № 36. P. 1627–1639.
Фильтрация методом Савицкого-Голея спектральных характеристик чувствительности матричных фотоприемных устройств / А.В. Никонов, Р.В. Давлетшин, Н.И. Яковлева и др. // Успехи прикладной физики. 2016. Т. 4. № 2. С. 198 – 205.
Алгоритм оценки долговременных вариаций MODIS NDVI / Б.В. Содномов, А.А. Аюржана-ев, Б.З. Цыдыпов и др. // Журнал Сибирского федерального университета. 2018. Т. 11. № 1. С. 61-68.
Refbacks
- There are currently no refbacks.